skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Levin, Simon"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Risk-driven behaviour provides a feedback mechanism through which individuals both shape and are collectively affected by an epidemic. We introduce a general and flexible compartmental model to study the effect of heterogeneity in the population with regard to risk tolerance. The interplay between behaviour and epidemiology leads to a rich set of possible epidemic dynamics. Depending on the behavioural composition of the population, we find that increasing heterogeneity in risk tolerance can either increase or decrease the epidemic size. We find that multiple waves of infection can arise due to the interplay between transmission and behaviour, even without the replenishment of susceptibles. We find that increasing protective mechanisms such as the effectiveness of interventions, the fraction of risk-averse people in the population and the duration of intervention usage reduce the epidemic overshoot. When the protection is pushed past a critical threshold, the epidemic dynamics enter an underdamped regime where the epidemic size exactly equals the herd immunity threshold and overshoot is eliminated. Finally, we can find regimes where epidemic size does not monotonically decrease with a population that becomes increasingly risk-averse. 
    more » « less
    Free, publicly-accessible full text available April 1, 2026
  2. Free, publicly-accessible full text available February 1, 2026
  3. Free, publicly-accessible full text available February 1, 2026
  4. Season length and its associated variables can influence the expression of social behaviours, including the occurrence of eusociality in insects. Eusociality can vary widely across environmental gradients, both within and between different species. Numerous theoretical models have been developed to examine the life history traits that underlie the emergence and maintenance of eusociality, yet the impact of seasonality on this process is largely uncharacterized. Here, we present a theoretical model that incorporates season length and offspring development time into a single, individual-focused model to examine how these factors can shape the costs and benefits of social living. We find that longer season lengths and faster brood development times are sufficient to favour the emergence and maintenance of a social strategy, while shorter seasons favour a solitary one. We also identify a range of season lengths where social and solitary strategies can coexist. Moreover, our theoretical predictions are well matched to the natural history and behaviour of two flexibly eusocial bee species, suggesting that our model can make realistic predictions about the evolution of different social strategies. Broadly, this work reveals the crucial role that environmental conditions can have in shaping social behaviour and its evolution and it underscores the need for further models that explicitly incorporate such variation to study the evolutionary trajectories of eusociality. 
    more » « less
  5. The multiple immunity responses exhibited in the population and co-circulating variants documented during pandemics show a high potential to generate diverse long-term epidemiological scenarios. Transmission variability, immune uncertainties and human behaviour are crucial features for the predictability and implementation of effective mitigation strategies. Nonetheless, the effects of individual health incentives on disease dynamics are not well understood. We use a behavioural-immuno-epidemiological model to study the joint evolution of human behaviour and epidemic dynamics for different immunity scenarios. Our results reveal a trade-off between the individuals’ immunity levels and the behavioural responses produced. We find that adaptive human behaviour can avoid dynamical resonance by avoiding large outbreaks, producing subsequent uniform outbreaks. Our forward-looking behaviour model shows an optimal planning horizon that minimizes the epidemic burden by balancing the individual risk–benefit trade-off. We find that adaptive human behaviour can compensate for differential immunity levels, equalizing the epidemic dynamics for scenarios with diverse underlying immunity landscapes. Our model can adequately capture complex empirical behavioural dynamics observed during pandemics. We tested our model for different US states during the COVID-19 pandemic. Finally, we explored extensions of our modelling framework that incorporate the effects of lockdowns, the emergence of a novel variant, prosocial attitudes and pandemic fatigue. 
    more » « less
  6. Abstract Season length and its associated variables can influence the expression of social behaviors, including the occurrence of eusociality in insects. Eusociality can vary widely across environmental gradients, both within and between different species. Numerous theoretical models have been developed to examine the life history traits that underlie the emergence and maintenance of eusociality, yet the impact of seasonality on this process is largely uncharacterized. Here, we present a theoretical model that incorporates season length and offspring development time into a single, individual-focused model to examine how these factors can shape the costs and benefits of social living. We find that longer season lengths and faster brood development times are sufficient to favor the emergence and maintenance of a social strategy, while shorter seasons favor a solitary one. We also identify a range of season lengths where social and solitary strategies can coexist. Moreover, our theoretical predictions are well-matched to the natural history and behavior of two flexibly-eusocial bee species, suggesting our model can make realistic predictions about the evolution of different social strategies. Broadly, this work reveals the crucial role that environmental conditions can have in shaping social behavior and its evolution and underscores the need for further models that explicitly incorporate such variation to study evolutionary trajectories of eusociality. 
    more » « less
  7. Abstract Phytoplankton stoichiometry modulates the interaction between carbon, nitrogen and phosphorus cycles. Environmentally driven variations in phytoplankton C:N:P can alter biogeochemical cycling compared to expectations under fixed ratios. In fact, the assumption of fixed C:N:P has been linked to Earth System Model (ESM) biases and potential misrepresentation of responses to future change. Here we integrate key elements of the Adaptive Trait Optimization Model (ATOM) for phytoplankton stoichiometry with the Carbon, Ocean Biogeochemistry and Lower Trophics (COBALT) ocean biogeochemical model. Within a series of global ocean‐ice‐ecosystem retrospective simulations, ATOM‐COBALT reproduced observations of phytoplankton N:P, and compared to static ratios, exhibited reduced phytoplankton P‐limitation, enhanced N‐fixation, and increased low‐latitude export, improving consistency with observations and highlighting the biogeochemical implications of dynamic N:P. We applied ATOM‐COBALT to explore the impacts of different physiological mechanisms hypothesized to underlie N:P variation, finding that two mechanisms together drove the observed patterns: proportionality of P‐rich ribosomes in phytoplankton cells to growth rates and reductions in P‐storage during scarcity. A third mechanism which linked temperature with phytoplankton biomass allocations to non‐ribosomal proteins, led only to relatively modest impacts because this mechanism decreased the temperature dependence of phytoplankton growth rates, compensating for changes in N:P. We find that there are quantitative response differences that associate distinctive biogeochemical footprints with each mechanism, which are most apparent in highly productive low‐latitude regions. These results suggest that variable phytoplankton N:P makes phytoplankton productivity and export resilient to environmental changes, and support further research on the physiological and environmental drivers of phytoplankton stoichiometry and biogeochemical role. 
    more » « less
  8. The dynamics of ecological communities in nature are typically characterized by probabilistic processes involving invasion dynamics. Because of technical challenges, however, the majority of theoretical and experimental studies have focused on coexistence dynamics. Therefore, it has become central to understand the extent to which coexistence outcomes can be used to predict analogous invasion outcomes relevant to systems in nature. Here, we study the limits to this predictability under a geometric and probabilistic Lotka– Volterra framework. We show that while individual survival probability in coexistence dynamics can be fairly closely translated into invader colonization probability in invasion dynamics, the translation is less precise between community persistence and community augmentation, and worse between exclusion probability and replacement probability. These results provide a guiding and testable theoretical framework regarding the translatability of outcomes between coexistence and invasion outcomes when communities are represented by Lotka–Volterra dynamics under environmental uncertainty. 
    more » « less
  9. Feldman, Marcus (Ed.)
    Characterizing the relationship between disease testing behaviors and infectious disease dynamics is of great importance for public health. Tests for both current and past infection can influence disease-related behaviors at the individual level, while population-level knowledge of an epidemic’s course may feed back to affect one’s likelihood of taking a test. The COVID-19 pandemic has generated testing data on an unprecedented scale for tests detecting both current infection (PCR, antigen) and past infection (serology); this opens the way to characterizing the complex relationship between testing behavior and infection dynamics. Leveraging a rich database of individualized COVID-19 testing histories in New Jersey, we analyze the behavioral relationships between PCR and serology tests, infection, and vaccination. We quantify interactions between individuals’ test-taking tendencies and their past testing and infection histories, finding that PCR tests were disproportionately taken by people currently infected, and serology tests were disproportionately taken by people with past infection or vaccination. The effects of previous positive test results on testing behavior are less consistent, as individuals with past PCR positives were more likely to take subsequent PCR and serology tests at some periods of the epidemic time course and less likely at others. Lastly, we fit a model to the titer values collected from serology tests to infer vaccination trends, finding a marked decrease in vaccination rates among individuals who had previously received a positive PCR test. These results exemplify the utility of individualized testing histories in uncovering hidden behavioral variables affecting testing and vaccination. 
    more » « less